Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.027
Filtrar
1.
Luminescence ; 39(4): e4746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644460

RESUMO

The use of photochromism to increase the credibility of consumer goods has shown great promise. To provide mechanically dependable anticounterfeiting nanofibres, it has also been critical to improve the engineering processes of authentication patterns. Mechanically robust and photoluminescent electrospun poly(ethylene oxide)/glass (PGLS) nanofibres (150-350 nm) immobilized with nanoparticles of lanthanide-doped aluminate (NLA; 8-15 nm) were developed using electrospinning technology for anticounterfeiting purposes. The provided nanofibrous membranes changed colour from transparent to green when irradiated with ultraviolet light. By delivering NLA with homogeneous distribution without aggregations, we were able to keep the nanofibrous membrane transparent. When excited at 365 nm, NLA@PGLS nanofibres showed an emission intensity at 517 nm. The hydrophobicity of NLA@PGLS nanofibres improved by raising the pigment concentration as the contact angle was increased from 146.4° to 160.3°. After being triggered by ultraviolet light, NLA@PGLS showed quick and reversible photochromism without fatigue. It was shown that the suggested method can be applied to reliably produce various anticounterfeiting materials.


Assuntos
Vidro , Nanofibras , Polietilenoglicóis , Raios Ultravioleta , Nanofibras/química , Polietilenoglicóis/química , Vidro/química , Tamanho da Partícula , Propriedades de Superfície
2.
Nat Commun ; 15(1): 3485, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664427

RESUMO

Spider silk exhibits an excellent combination of high strength and toughness, which originates from the hierarchical self-assembled structure of spidroin during fiber spinning. In this work, superfine nanofibrils are established in polyelectrolyte artificial spider silk by optimizing the flexibility of polymer chains, which exhibits combination of breaking strength and toughness ranging from 1.83 GPa and 238 MJ m-3 to 0.53 GPa and 700 MJ m-3, respectively. This is achieved by introducing ions to control the dissociation of polymer chains and evaporation-induced self-assembly under external stress. In addition, the artificial spider silk possesses thermally-driven supercontraction ability. This work provides inspiration for the design of high-performance fiber materials.


Assuntos
Nanofibras , Polieletrólitos , Seda , Aranhas , Animais , Nanofibras/química , Aranhas/química , Seda/química , Polieletrólitos/química , Resistência à Tração , Músculos , Materiais Biomiméticos/química
3.
ACS Sens ; 9(4): 2000-2009, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38584366

RESUMO

This study presents a colorimetric/electrical dual-sensing system (CEDS) for low-power, high-precision, adaptable, and real-time detection of hydrogen sulfide (H2S) gas. The lead acetate/poly(vinyl alcohol) (Pb(Ac)2/PVA) nanofiber film was transferred onto a polyethylene terephthalate (PET) flexible substrate by electrospinning to obtain colorimetric/electrical sensors. The CEDS was constructed to simultaneously record both the visual and electrical response of the sensor, and the improved Manhattan segmentation algorithm and deep neural network (DNN) were used as its intelligent algorithmic aids to achieve quantitative exposure to H2S. By exploring the mechanism of color change and resistance response of the sensor, a dual-sensitivity mechanism explanation model was proposed to verify that the system, as a dual-mode parallel system, can adequately solve the sensor redundancy problem. The results show that the CEDS can achieve a wide detection range of H2S from 0.1-100 ppm and identify the H2S concentration in 4 s at the fastest. The sensor can be stabilized for 180 days with excellent selectivity and a low limit of detection (LOD) to 0.1 ppm of H2S. In addition, the feasibility of the CEDS for measuring H2S levels in underground waterways was validated. This work provides a new method for adaptable, wide range of applications and low-power, high-precision H2S gas detection.


Assuntos
Colorimetria , Aprendizado Profundo , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/análise , Colorimetria/métodos , Limite de Detecção , Nanofibras/química , Álcool de Polivinil/química , Chumbo/análise , Chumbo/química , Acetatos/química
4.
ACS Sens ; 9(4): 2183-2193, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38588327

RESUMO

Sensitive and selective acetone detection is of great significance in the fields of environmental protection, industrial production, and individual health monitoring from exhaled breath. To achieve this goal, bimetallic Au@Pt core-shell nanospheres (BNSs) functionalized-electrospun ZnFe2O4 nanofibers (ZFO NFs) are prepared in this work. Compared to pure NFs-650 analogue, the ZFO NFs/BNSs-2 sensor exhibits a stronger mean response (3.32 vs 1.84), quicker response/recovery speeds (33 s/28 s vs 54 s/42 s), and lower operating temperature (188 vs 273 °C) toward 0.5 ppm acetone. Note that an experimental detection limit of 30 ppb is achieved, which ranks among the best cases reported thus far. Besides the demonstrated excellent repeatability, humidity-enhanced response, and long-term stability, the selectivity toward acetone is remarkably improved after BNSs functionalization. Through material characterizations and DFT calculations, all these improvements could be attributed to the boosted oxygen vacancies and abundant Schottky junctions between ZFO NFs and BNSs, and the synergistic catalytic effect of BNSs. This work offers an alternative strategy to realize selective subppm acetone under high-humidity conditions catering for the future requirements of noninvasive breath diabetes diagnosis in the field of individual healthcare.


Assuntos
Acetona , Testes Respiratórios , Ouro , Nanofibras , Nanosferas , Platina , Acetona/análise , Acetona/química , Nanofibras/química , Ouro/química , Testes Respiratórios/métodos , Nanosferas/química , Platina/química , Humanos , Limite de Detecção , Oxigênio/química , Técnicas Eletroquímicas/métodos
5.
Mar Drugs ; 22(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667777

RESUMO

Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications.


Assuntos
Fosfatos de Cálcio , Quitosana , Técnicas de Cocultura , Fibroblastos , Nanofibras , Osteoblastos , Osteoblastos/efeitos dos fármacos , Quitosana/química , Fibroblastos/efeitos dos fármacos , Porosidade , Nanofibras/química , Fosfatos de Cálcio/química , Animais , Regeneração Óssea/efeitos dos fármacos , Camundongos , Tecidos Suporte/química , Carbonatos/química , Calcificação Fisiológica/efeitos dos fármacos
6.
AAPS PharmSciTech ; 25(4): 74, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575778

RESUMO

Advancements in recombinant DNA technology have made proteins and peptides available for diagnostic and therapeutic applications, but their effectiveness when taken orally leads to poor patient compliance, requiring clinical administration. Among the alternative routes, transmucosal delivery has the advantage of being noninvasive and bypassing hepato-gastrointestinal clearance. Various mucosal routes-buccal, nasal, pulmonary, rectal, and vaginal-have been explored for delivering these macromolecules. Nanofibers, due to their unique properties like high surface-area-to-volume ratio, mechanical strength, and improved encapsulation efficiency, serve as promising carriers for proteins and peptides. These nanofibers can be tailored for quick dissolution, controlled release, enhanced encapsulation, targeted delivery, and improved bioavailability, offering superior pharmaceutical and pharmacokinetic performance compared to conventional methods. This leads to reduced dosages, fewer side effects, and enhanced patient compliance. Hence, nanofibers hold tremendous potential for protein/peptide delivery, especially through mucosal routes. This review focuses on the therapeutic application of proteins and peptides, challenges faced in their conventional delivery, techniques for fabricating different types of nanofibers and, various nanofiber-based dosage forms, and factors influencing nanofiber generation. Insights pertaining to the precise selection of materials used for fabricating nanofibers and regulatory aspects have been covered. Case studies wherein the use of specific protein/peptide-loaded nanofibers and delivered via oral/vaginal/nasal mucosa for diagnostic/therapeutic use and related preclinical and clinical studies conducted have been included in this review.


Assuntos
Sistemas de Liberação de Medicamentos , Nanofibras , Feminino , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanofibras/química , Proteínas , Peptídeos , Preparações Farmacêuticas
7.
ACS Appl Mater Interfaces ; 16(15): 18268-18284, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564419

RESUMO

The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aß1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.


Assuntos
Nanofibras , Nanoestruturas , Neuroblastoma , Humanos , Histidina , Peptídeos/química , Nanofibras/química , Amiloide/química , Peptídeos beta-Amiloides/química
8.
Bioorg Med Chem Lett ; 104: 129727, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582132

RESUMO

ß-galactosidase (ß-gal) has high activity in various malignancies, which is suitable for targeted positron emission tomography (PET) imaging. Meanwhile, ß-gal can successfully guide the formation of nanofibers, which enhances the intensity of imaging and extends the imaging time. Herein, we designed a ß-galactosidase-guided self-assembled PET imaging probe [68Ga]Nap-NOTA-1Gal. We envisage that ß-gal could recognize and cleave the target site, bringing about self-assembling to form nanofibers, thereby enhancing the PET imaging effect. The targeting specificity of [68Ga]Nap-NOTA-1Gal for detecting ß-gal activity was examined using the control probe [68Ga]Nap-NOTA-1. Micro-PET imaging showed that tumor regions of [68Ga]Nap-NOTA-1Gal were visible after injection. And the tumor uptake of [68Ga]Nap-NOTA-1Gal was higher than [68Ga]Nap-NOTA-1 at all-time points. Our results demonstrated that the [68Ga]Nap-NOTA-1Gal can be used for the purpose of a new promising PET probe for helping diagnose cancer with high levels of ß-gal activity.


Assuntos
Nanofibras , Neoplasias , Humanos , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons/métodos , beta-Galactosidase , Linhagem Celular Tumoral
9.
Sci Rep ; 14(1): 7926, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575619

RESUMO

Nanofibers are investigated to be superiorly applicable in different purposes such as drug delivery systems, air filters, wound dressing, water filters, and tissue engineering. Herein, polyacrylonitrile (PAN) is thermally treated for autocatalytic cyclization, to give optically active PAN-nanopolymer, which is subsequently applicable for preparation of nanofibers through solution blow spinning. Whereas, solution blow spinning is identified as a process for production of nanofibers characterized with high porosity and large surface area from a minimum amounts of polymer solution. The as-prepared nanofibers were shown with excellent photoluminescence and microbicide performance. According to rheological properties, to obtain spinnable PAN-nanopolymer, PAN (12.5-15% wt/vol, honey like solution, 678-834 mPa s), thermal treatment for 2-4 h must be performed, whereas, time prolongation resulted in PAN-nanopolymer gelling or rubbering. Size distribution of PAN-nanopolymer (12.5% wt/vol) is estimated (68.8 ± 22.2 nm), to reflect its compatibility for the production of carbon nanofibers with size distribution of 300-400 nm. Spectral mapping data for the photoluminescent emission showed that, PAN-nanopolymer were exhibited with two intense peaks at 498 nm and 545 nm, to affirm their superiority for production of fluorescent nanofibers. The microbial reduction % was estimated for carbon nanofibers prepared from PAN-nanopolymer (12.5% wt/vol) to be 61.5%, 71.4% and 81.9%, against S. aureus, E. coli and C. albicans, respectively. So, the prepared florescent carbon nanofibers can be potentially applicable in anti-infective therapy.


Assuntos
Resinas Acrílicas , Anti-Infecciosos , Nanofibras , Escherichia coli , Staphylococcus aureus , Desenvolvimento Industrial , Candida albicans , Carbono
10.
J Mater Chem B ; 12(16): 3984-3995, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563496

RESUMO

The natural extracellular matrix (ECM) consists of a continuous integrated fibrin network and a negatively charged proteoglycan-based matrix. In this work, we report a novel three-dimensional nanofiber hydrogel composite that mimics the natural ECM structure, exhibiting both degradability and mechanical characteristics comparable to that of tumor tissue. The embedded nanofiber improves the hydrogel mechanical properties, and varying the fiber density can match the elastic modulus of different tumor tissues (1.51-10.77 kPa). The degradability of the scaffold gives sufficient space for tumor cells to secrete and remodel the ECM. The expression levels of cancer stem cell markers confirmed the development of aggressive and metastatic phenotypes of prostate cancer cells in the 3D scaffold. Similar results were obtained in terms of anticancer resistance of prostate cancer cells in 3D scaffolds showing stem cell-like properties, suggesting that the current bionic 3D scaffold tumor model has broad potential in the development of effective targeted agents.


Assuntos
Matriz Extracelular , Hidrogéis , Nanofibras , Nanofibras/química , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Hidrogéis/química , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Tecidos Suporte/química , Masculino , Linhagem Celular Tumoral , Células Tumorais Cultivadas , Proliferação de Células/efeitos dos fármacos
11.
Food Funct ; 15(8): 4399-4408, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38563197

RESUMO

A Pickering emulsion is an emulsion system stabilized by solid particles and represents a promising candidate for emulsifying lipids. Cellulose nanofibers (CNFs) have excellent ability to control the lipid release rate. This study aims to find the optimal formulation for a nanocellulose-stabilized Pickering emulsion that is the most effective in reducing the lipid release rate. The Pickering emulsion was prepared by homogenizing pretreated nanocellulose with medium-chain triglycerides using high-speed and ultrasonic homogenizers. The results show that the Pickering emulsion with 0.709% nanocellulose and 30.6% medium-chain fatty acid content yielded an average particle size of approximately 2.5 µm, which is the most stable and effective in reducing the amount of the lipids released. The nanocellulose Pickering emulsion formulation developed in this study forms a significant foundation for future research and applications regarding the use of nanotechnology and Pickering emulsions to maintain the balance between one's health and the desirable flavor of fat.


Assuntos
Celulose , Emulsões , Nanofibras , Tamanho da Partícula , Celulose/química , Emulsões/química , Nanofibras/química , Lipídeos/química , Triglicerídeos/química , Animais , Humanos
12.
Biomed Mater ; 19(3)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38593835

RESUMO

Electrospinning technique converts polymeric solutions into nanoscale fibers using an electric field and can be used for various biomedical and clinical applications. Extracellular vesicles (EVs) are cell-derived small lipid vesicles enriched with biological cargo (proteins and nucleic acids) potential therapeutic applications. In this review, we discuss extending the scope of electrospinning by incorporating stem cell-derived EVs, particularly exosomes, into nanofibers for their effective delivery to target tissues. The parameters used during the electrospinning of biopolymers limit the stability and functional properties of cellular products. However, with careful consideration of process requirements, these can significantly improve stability, leading to longevity, effectiveness, and sustained and localized release. Electrospun nanofibers are known to encapsulate or surface-adsorb biological payloads such as therapeutic EVs, proteins, enzymes, and nucleic acids. Small EVs, specifically exosomes, have recently attracted the attention of researchers working on regeneration and tissue engineering because of their broad distribution and enormous potential as therapeutic agents. This review focuses on current developments in nanofibers for delivering therapeutic cargo molecules, with a special emphasis on exosomes. It also suggests prospective approaches that can be adapted to safely combine these two nanoscale systems and exponentially enhance their benefits in tissue engineering, medical device coating, and drug delivery applications.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos , Nanofibras , Regeneração , Células-Tronco , Engenharia Tecidual , Nanofibras/química , Humanos , Exossomos/metabolismo , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Tecidos Suporte/química
13.
ACS Appl Bio Mater ; 7(4): 2569-2581, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570335

RESUMO

Chronic wounds impose a significant burden on individuals and healthcare systems, necessitating the development of advanced wound management strategies. Tissue engineering, with its ability to create scaffolds that mimic native tissue structures and promote cellular responses, offers a promising approach. Electrospinning, a widely used technique, can fabricate nanofibrous scaffolds for tissue regeneration. In this study, we developed patterned nanofibrous scaffolds using a blend of poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS), known for their biocompatibility and biodegradability. By employing a mesh collector, we achieved a unique fiber orientation pattern that emulated the natural tissue architecture. The average fiber diameter of PGS/PCL collected on aluminum foil and on mesh was found to be 665.2 ± 4 and 404.8 ± 16 nm, respectively. To enhance the scaffolds' bioactivity and surface properties, it was coated with hyaluronic acid (HA), a key component of the extracellular matrix known for its wound-healing properties. The HA coating improved the scaffold hydrophilicity and surface wettability, facilitating cell attachment, spreading, and migration. Furthermore, the HA-coated scaffold exhibited enhanced biocompatibility, promoting cell viability and proliferation. High-throughput RNA sequencing was performed to analyze the influence of the fabricated scaffold on the gene expression levels of endothelial cells. The top-upregulated biological processes and pathways include cell cycle regulation and cell proliferation. The results revealed significant alterations in gene expression profiles, indicating the scaffold's ability to modulate cellular functions and promote wound healing processes. The developed scaffold holds great promise for advanced wound management and tissue regeneration applications. By harnessing the advantages of aligned nanofibers, biocompatible polymers, and HA coating, this scaffold represents a potential solution for improving wound healing outcomes and improving the quality of life for individuals suffering from chronic wounds.


Assuntos
Nanofibras , Tecidos Suporte , Humanos , Tecidos Suporte/química , Nanofibras/química , Ácido Hialurônico/farmacologia , Poliésteres/farmacologia , Poliésteres/química , Células Endoteliais , Transcriptoma , Qualidade de Vida
14.
Carbohydr Polym ; 335: 122086, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616071

RESUMO

Recently, attention has been paid to cellulose nanofibers, such as 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibers (TOCN), as new bio-based materials. In addition, hydrophobized surface on TOCNs can be expected to provide new applications. Based on our previous finding that partially 2-deoxygenated (P2D)-amylose, which was synthesized by GP-catalyzed enzymatic copolymerization of D-glucal with α-d-glucose 1-phosphate (Glc-1-P) as comonomers, was hydrophobic, in this study, hydrophobization of surfaces on TOCNs was investigated by the GP-catalyzed enzymatic grafting of P2D-amylose chains on TOCNs. After maltooligosaccharide primers were modified on TOCNs, the GP-catalyzed enzymatic copolymerization of D-glucal with Glc-1-P was performed for grafting of P2D-amylose chains. 1H NMR spectroscopic analysis confirmed the production of P2D-amylose-grafted TOCNs with different 2-deoxyglucose/Glc unit ratios. The powder X-ray diffraction profiles of the products indicated that the entire crystalline structures were strongly affected by the unit ratios and chain lengths of the grafted polysaccharides. The SEM images observed differences in nanofiber diameter in the reaction solutions and surface morphology after film formation, due to grafting of P2D-amylose chains from TOCNs. The water contact angle measurement of a cast film prepared from the product indicated its hydrophobicity.


Assuntos
Celulose Oxidada , Nanofibras , Celulose , Amilose , Gluconato de Cálcio
15.
Carbohydr Polym ; 335: 122082, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616100

RESUMO

The preparation of cellulose nanofiber (CNF) using traditional methods is currently facing challenges due to concerns regarding environmental pollution and safety. Herein, a novel CNF was obtained from bamboo shoot shell (BSS) by low-concentration acid and dynamic high-pressure microfluidization (DHPM) treatment. The resulting CNF was then characterized, followed by in vitro and in vivo safety assessments. Compared to insoluble dietary fiber (IDF), the diameters of HIDF (IDF after low-concentration acid hydrolysis) and CNF were significantly decreased to 167.13 nm and 70.97 nm, respectively. Meanwhile, HIDF and CNF showed a higher crystallinity index (71.32 % and 74.35 %). Structural analysis results indicated the successful removal of lignin and hemicellulose of HIDF and CNF, with CNF demonstrating improved thermostability. In vitro, a high dose of CNF (1500 µg/mL) did not show any signs of cytotoxicity on Caco-2 cells. In vivo, no death was observed in the experimental mice, and there was no significant difference between CNF (1000 mg/kg·bw) and control group in hematological index and histopathological analysis. Overall, this study presents an environmentally friendly method for preparing CNF from BSS while providing evidence regarding its safety through in vitro and in vivo assessments, laying the foundation for its potential application in food.


Assuntos
Celulose , Nanofibras , Animais , Camundongos , Humanos , Celulose/toxicidade , Células CACO-2 , Nanofibras/toxicidade , Verduras , Lignina
16.
J Chromatogr A ; 1721: 464854, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38579528

RESUMO

Developing adsorbents with high performance and long service life for effective extracting the trace organochlorine pesticides (OCPs) from real water is attracting numerous attentions. Herein, a self-standing covalent organic framework (COF-TpPa) membrane with fiber morphology was successfully synthesized by using electrospun nanofiber membranes as template and employed as solid-phase microextraction (SPME) coating for ultra-high sensitivity extraction and analysis of trace OCPs in water. The as-synthesized COF-TpPa membrane exhibited a high specific surface area (800.83 m2 g-1), stable nanofibrous structure, and excellent chemical and thermal stability. Based on the COF-TpPa membrane, a new SPME analytical method in conjunction with gas chromatography-mass spectrometry (GC-MS) was established. This proposed method possessed favorable linearity in concentration of 0.05-2000 ng L-1, high sensitivity with enrichment factors ranging from 2175 to 5846, low limits of detection (0.001-0.150 ng L-1), satisfactory precision (RSD < 10 %), and excellent repeatability (>150 cycles), which was better than most of the reported works. Additionally, the density functional theory (DFT) calculations and XPS results demonstrated that the outstanding enrichment performance of the COF-TpPa membrane was owing to synergistic effect of π-π stacking effects, high specific surface area and hydrogen bonding. This work will expect to extend the applications of COF membrane to captures trace organic pollutants in complex environmental water, as well as offer a multiscale interpretation for the design of effective adsorbents.


Assuntos
Hidrocarbonetos Clorados , Estruturas Metalorgânicas , Nanofibras , Praguicidas , Poluentes Químicos da Água , Água , Porosidade , Poluentes Químicos da Água/análise , Microextração em Fase Sólida/métodos , Praguicidas/análise , Hidrocarbonetos Clorados/análise
17.
Anal Chem ; 96(15): 5940-5950, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38562013

RESUMO

Peptide-based supramolecules exhibit great potential in various fields due to their improved target recognition ability and versatile functions. However, they still suffer from numerous challenges for the biopharmaceutical analysis, including poor self-assembly ability, undesirable ligand-antibody binding rates, and formidable target binding barriers caused by ligand crowding. To tackle these issues, a "polyvalent recognition" strategy employing the CD20 mimotope peptide derivative NBD-FFVLR-GS-WPRWLEN (acting on the CDR domains of rituximab) was proposed to develop supramolecular nanofibers for target antibody recognition. These nanofibers exhibited rapid self-assembly within only 1 min and robust stability. Their binding affinity (179 nM) for rituximab surpassed that of the monomeric peptide (7 µM) by over 38-fold, highlighting that high ligand density and potential polyvalent recognition can efficiently overcome the target binding barriers of traditional supramolecules. Moreover, these nanofibers exhibited an amazing "instantaneous capture" rate (within 15 s), a high recovery (93 ± 3%), and good specificity for the target antibody. High-efficiency enrichment of rituximab was achieved from cell culture medium with good recovery and reproducibility. Intriguingly, these peptide nanofibers combined with bottom-up proteomics were successful in tracking the deamidation of asparagine 55 (from 10 to 16%) on the rituximab heavy chain after 21 day incubation in human serum. In summary, this study may open up an avenue for the development of versatile mimotope peptide supramolecules for biorecognition and bioanalysis of biopharmaceuticals.


Assuntos
Produtos Biológicos , Nanofibras , Humanos , Rituximab , Nanofibras/química , Ligantes , Reprodutibilidade dos Testes , Peptídeos/química
18.
Int J Nanomedicine ; 19: 1683-1697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445226

RESUMO

Introduction: Cartilage regeneration is a challenging issue due to poor regenerative properties of tissues. Electrospun nanofibers hold enormous potentials for treatments of cartilage defects. However, nanofibrous materials used for the treatment of cartilage defects often require physical and/or chemical modifications to promote the adhesion, proliferation, and differentiation of cells. Thus, it is highly desirable to improve their surface properties with functionality. We aim to design hydrophilic, adhesive, and compound K-loaded nanofibers for treatments of cartilage defects. Methods: Hydrophilic and adhesive compound K-containing polycaprolactone nanofibers (CK/PCL NFs) were prepared by coatings of gallic acid-conjugated chitosan (CHI-GA). Therapeutic effects of CHI-GA/CK/PCL NFs were assessed by the expression level of genes involved in the cartilage matrix degradation, inflammatory response, and lipid accumulations in the chondrocytes. In addition, Cartilage damage was evaluated by safranin O staining and immunohistochemistry of interleukin-1ß (IL-1ß) using OA animal models. To explore the pathway associated with therapeutic effects of CHI-GA/CK/PCL NFs, cell adhesion, phalloidin staining, and the expression level of integrins and peroxisome proliferator-activated receptor (PPARs) were evaluated. Results: CHI-GA-coated side of the PCL NFs showed hydrophilic and adhesive properties, whereas the unmodified opposite side remained hydrophobic. The expression levels of genes involved in the degradation of the cartilage matrix, inflammation, and lipogenesis were decreased in CHI-GA/CK/PCL NFs owing to the release of CK. In vivo implantation of CHI-GA/CK/PCL NFs into the cartilage reduced cartilage degradation induced by destabilization of the medial meniscus (DMM) surgery. Furthermore, the accumulation of lipid deposition and expression levels of IL-1ß was reduced through the upregulation of PPAR. Conclusion: CHI-GA/CK/PCL NFs were effective in the treatments of cartilage defects by inhibiting the expression levels of genes involved in cartilage degradation, inflammation, and lipogenesis as well as reducing lipid accumulation and the expression level of IL-1ß via increasing PPAR.


Assuntos
Quitosana , Ginsenosídeos , Nanofibras , Animais , Receptores Ativados por Proliferador de Peroxissomo , Cartilagem , Inflamação/tratamento farmacológico , Regeneração , Lipídeos
19.
Artigo em Inglês | MEDLINE | ID: mdl-38479982

RESUMO

Core-shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core-shell nanofibers. The nanoscale effects and expansive specific surface area of core-shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core-shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi-chamber core-shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi-chamber core-shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi-chamber core-shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi-chamber core-shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi-chamber core-shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanofibras , Nanoestruturas , Nanofibras/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Polímeros/química
20.
ACS Sens ; 9(4): 1866-1876, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38499997

RESUMO

Electromagnetic sensors with flexible antennas as sensing elements have attracted increasing attention in noninvasive continuous glucose monitoring for diabetic patients. The significant radiation performance loss of flexible antennas during mechanical deformation impairs the reliability of glucose monitoring. Here, we present flexible ultrawideband monopole antennas composed of Ti3C2 MXene and cellulose nanofibril (CNF) composite films for continuous glucose monitoring. The flexible MXene/CNF antenna with 20% CNF content can obtain a gain of up to 3.33 dBi and a radiation efficiency of up to 65.40% at a frequency range from 2.3 to 6.0 GHz. Compared with the pure MXene antenna, this antenna offers a comparable radiation performance and a lower performance loss in mechanical bending deformation. Moreover, the MXene/CNF antenna shows a stable response to fetal bovine serum/glucose, with a correlation of >0.9 at the reference glucose levels, and responds sensitively to the variations in blood glucose levels during human trials. The proposed strategy enhancing the mechanical robustness of MXene-based flexible antennas makes metallic two-dimensional nanomaterials more promising in wearable electromagnetic sensors.


Assuntos
Glicemia , Celulose , Titânio , Celulose/química , Titânio/química , Humanos , Glicemia/análise , Nanocompostos/química , Técnicas Biossensoriais/métodos , Dispositivos Eletrônicos Vestíveis , Animais , Nanofibras/química , Glucose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...